Complex Data Types: Arrays

Up until now we have only worked with simple data types, i.e. we have used variables to store information. This is okay while your programs are small and simple however when the programs get more complicated and larger we need a more flexible and extensible data storage.

Here is an example, a person wants a program that allows them to enter the times of the first 10 marathon runner to finish a race. If you you use standard variables you would need 10 of them to store each of the runners times, see the example below:

	Dim sngRunner1 as Single

Dim sngRunner2 as Single

Dim sngRunner3 as Single

Dim sngRunner4 as Single

Dim sngRunner5 as Single

Dim sngRunner6 as Single

Dim sngRunner7 as Single

Dim sngRunner8 as Single

Dim sngRunner9 as Single

Dim sngRunner10 as Single

As you can see you will need 10 variables to store each of the 10 runners finishing times. Okay doesn’t seem too bad, now think how much code you need to write to read in each runners time bearing in mind each variable name has to be explicitly defined in your code. Now you see it could take a while.

So from this you can see that a simple variable is useful for holding small numbers of unrelated values but when you end up with lots of related values it can get time consuming and cumbersome to just use variables, for example what if you wanted to store the times of 500 runners in a marathon the code would end up like this:

	Dim sngRunner1 as Single

Dim sngRunner2 as Single

Dim sngRunner3 as Single

Dim sngRunner4 as Single

Dim sngRunner5 as Single

Dim sngRunner496 as Single

Dim sngRunner497 as Single

Dim sngRunner498 as Single

Dim sngRunner499 as Single

Dim sngRunner500 as Single

Oh my, what a lot of variables you need, now think about all the code you would need to write to allow you to input information into these variables, it doesn’t bear thinking about.

So if you wanted to store large amounts of related data there is a way to do it and you do it by using a complex data type called an Array. Using an array has the benefits of:

· Saves Time

· Saves Code

· Can potentially make your program faster as a processor can predict the next memory address quicker.

Arrays

What is an Array? Well it’s like a variable but different, it stores information just like a variable, it stores data of a certain type, an integer, single, double, string etc. just like a variable but its structure is different.

See the diagram below for the comparison between a variable and an array. Using the runner example, the left is a normal simple variable. The right shows an Array which is a complex (data structure) variable.

[image: image8.png]
As you can see an Array is like a load of variables grouped together that like a variable can be accessed by their name, but to access it needs its index to be included when it is used.

Each part of the array is called an Element so in the example above the “runnerArray” array has 5 elements in it.

Each Element within the array is accessible by its number or Index this allows you to specify each element specifically if you need to put information into it or take information out.

Think of a normal simple variable as an array but an array of one, so when you put information into it or take information out you only have one element to work with so you don’t need an index you just call it by its name. Then think of an Array with 5 elements, obviously calling it by just its name is no good as it doesn’t specify which of the 5 elements you want! This is why when you access an array you access it by its name followed by the index of the element you want.
Accessing the Data in an Array

To access the information that is within an array you access it by its name followed by the index of the element you want. The syntax for this is shown below along with a diagram showing what information you will be getting. Using the example of the runner array, each of the 5 elements contains a single data type number i.e. the time so element 1 contains “23.3” and element 2 contains “23.9” and so on.
	
[image: image2.png]

	RunnerArray(1)

[image: image1.png]
	
[image: image3.png]

	[image: image7.png]runnerArray(4)
	
[image: image4.png]

As you can see you access something in the array by the name of the array followed by the index of the element. So for example (using the runnerArray example) if you wanted to write out the content of the element of array index 3 you would use this code:

	Msgbox(runnerArray(3))

You can assign the contents from an array element to a simple variable like anything else, see the code below:

	valueFromArray = runnerArray(3)

Also and most importantly you don’t have to specify a literal constant (i.e. a number written in your code) to get to the data you can use another variable to specify what element you want. See this code:

	index = 3

valueFromArray = runnerArray(index)

You can use a loop to get information in and out by incrementing or decrementing the index variable, now that’s useful!

Putting Information into the Array

Putting information into the array is the same thing but in reverse, see the code below:
	RunnerArray(4) = 10

The array element 4 now contains the value 10. Simple!

How about putting the contents of a simple variable into the array. No Problem. See this code:
	arrayInput = 10

runnerArray(4) = arrayInput

The array element 4 contains the value 10 same as before but this time put in by a simple variable. How about the same thing but specifying the array index as a variable too. You need, code like this:

	arrayInput = 10

index = 4

runnerArray(index) = arrayInput

Defining (Declaring) and Array

You can’t use an array until you have declared (defined) it. Doing this is much like defining a simple variable the code looks like this and is put in your “var” declarations of your program.
	Dim arrayname(arraysize) As datattype

Just like a variable you define it by its name then state it is a variable. You then need to put its size this is done by its start point to its endpoint. Then you include its datatype, integer, single, double, string etc. Remember the array can only be one datatype you can mix them!

Heres a few more examples:
	Dim intOurdata(10) As Integer

Dim dblMyarray(20) As Double

The start and end points can be literals (numbers written in your code) or constants (I think!).

Multi-dimensional Arrays

Okay now things can get a bit weird when you have multi-dimensional arrays, these are like normal arrays except you can add a dimension to them.

Multi-dimensional Arrays – 2 Dimensional Array (2D Array)

A one dimensional array has a width (i.e. x axis), a 2 dimensional array has a width (i.e. x axis) and a height (i.e. y axis). So its like a spreadsheet. You access each element by its x –axis followed by its y-axis.

[image: image5.png]
What about if I have a table of x and y, could I access it with array too ? Yes ! But, you will need a two-dimensional array. It is the same, but the declaration is like this :

	Dim arrayname(arraysizeX, arraysizeY) as datatype

That table is 5x3 in size. How to access it ? Well, like this :

	int2Darray[5,3] = 5

int2Darray[1,2] = 4

Multi-dimensional Arrays – 3 Dimensional Array (3D Array)

Same thing but now we add a third axis (dimension) so we have an “x axis”, a “y axis” and a “z axis”. We have width, height and depth. This is complicated you wont very often have to use one of these babies but here is a diagram and the code to access and to define it.

[image: image6.png]
How about the three-dimensional table or more ? It also the same. Look at the declaration :

	Dim arrayname(arraysizeX, arraysizeY, arraysizeZ) as Datatype

Accessing it is all the same :

	table3d(3,2,2) = 6

Multi-dimensional Arrays – 4 or More Dimensional Array

You can have more dimensions but this makes my brain hurt. You wont often need these but they follow the same pattern for defining them.

Using a loop to Input and Output Information

To input and output information you can use a loop as we know the start and end points of the loop, i.e. the size of the array we can use a FOR..NEXT loop.

See this example to show all the data in the array:
	For i = 1 to 10

 txtOutput.text = arrayRunner(i)

Next i

To input all the information see this example:

	For I = 1 to 10

 arrayRunner(i) = txtInput.text

Next i

Watch out for the array “out of bounds” if you specify an index of an element that doesn’t exist. For example you have the “arrayRunner” array which has 10 element but you loop goes to 20 you will get an array “out of bounds” error. See the code below:

	For i =1 to 20 do

 txtOutput.text = arrayRunner(i)

Next i

Anything over 10 doesn’t exist!

Control Arrays

If you need to erase the text property of 10 TextBoxes, what do you do? You make 10 statements: txtName0.Text = “”, txtName1.Text = “”, …, txtName9.Text = “”. This is one heck of a job. With control arrays, you can group related controls and refer to each control by an index. We then refer to the TextBoxes as txtName(0), txtName(1), …, txtName(9). To solve the problem, we write the following code:

For x= 0 To 9

 txtName(x).Text = “”

Next x

Note that the names of the controls are all the same. They only vary in index (when a control is part of a control array, an Index property is added). A control array is an array of the same control. This means you cannot have an array composed of TextBoxes and Labels. One good thing about controls array is that when you format one control (e.g. changing the BackColor property), the format is applied to all other controls in the array.

So how do you create a control array? When you name a control with an existing name (of the same type of control), Visual Basic displays a dialog box asking you if you want to make a control array. Just click Yes. If you click the No button, VB renames the control. The dialog box appears below.

Typically, an event procedure for a CommandButton is in the form:

Private Sub cmdSum_click ()

 …

End Sub

If we have a control array, we have controls with the same name. How do we know then which button has been pressed? All Event Procedures related to a control array has a special argument value passed to them. This value determines which control is being worked on. Below is a click event of a CommandButton that is part of a control array.

Private Sub cmdSum_click (Index as Integer)

 …

End Sub

How do you modify the properties of control array at runtime? Refer to a specific member of the control array using an index. For example,

txtGrade(0).Text = “90”

lblResult(4).Caption = “Computer”

Example

Let’s create an application that asks for a maximum of 10 numbers and displays the average of these numbers.

Dim numbers(10), x As Integer

Private Sub cmdAdd_Click()

 lblOutput.Caption = lblOutput.Caption & "[" + txtNum.Text & "]"

 numbers(x) = Val(txtNum.Text)

 x = x + 1

 If x = 10 Then
 cmdAdd.Enabled = False
 End If

End Sub

Private Sub cmdClear_Click()

 x = 0

 lblOutput.Caption = " "

End Sub

Private Sub cmdCompute_Click()

 Sum = 0

 For y = 0 To x - 1

 Sum = Sum + numbers(y)

 Next y

 lblAverage.Caption = " Average: " & Format((Sum / x), "0.0")

End Sub

Private Sub Form_Load()

 x = 0

End Sub

Exercise

Create the following application:

1. Using an Input Box, ask for how many student names are to be entered.

Ask the names of these students using a series of Input Boxes. Store the names in a data array.

2. When the all the names have been inputted, a form with the the controls listed below should be shown.

3. The Form contains a TextBox and a CommandButton labeled Search. The user may enter a name in the TextBox and presses the button to search this name. If the name is in the array, display a Message Box with caption Name found!. Otherwise, display Name not found!.
Contents of this element = 23.3

Contents of this element = 26.1

Shown in the message box would be “25.3”

Variable valueFromArray would contain “25.3”

Variable valueFromArray would contain “25.3”

txtNum�
�

cmdAdd�
�

lblOutput�
�

lblAverage�
�

cmdClear�
�

cmdCompute�
�

PAGE
11

_1140609071

_1140611185

_1141150295

_1140611681

_1140609083

_1140609060

